
New solutions for e�ective elastic moduli of microcracked
solids

Lianxi Shen, Sung Yi*

School of Mechanical and Production Engineering, Nanyang Technological University, Singapore 639798, Singapore

Received 12 January 1998; in revised form 22 November 1998

Abstract

A new energy balance equation is proposed to evaluate the e�ective moduli of solids with randomly dispersed
cracks. In this study, it is assumed that the potential energy released by embedding a circular or spherical RVE with

microcracks into an in®nite matrix is equal to that induced by introducing its e�ective medium into the identical
in®nite matrix. New non-interacting and self-consistent solutions for the e�ective moduli of linear elastic isotropic
solids with randomly oriented microcracks were evaluated on the basis of the present energy balance equation. The

linearization of the two present solutions leads to the dilute solution in the limit of small crack density. Comparison
studies with various existing solutions are also presented in detail. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many approximate schemes for determining e�ective moduli of cracked solids have been proposed in

literature. Bristow (1960) was the ®rst to obtain a non-interacting solution for microcracked solids. The

self-consistent method for inhomogeneous materials (Hershey and Dahlgren, 1954; Kroner, 1958; Hill,

1965; Budiansky, 1965) was used to calculate the e�ective moduli of solids with random cracks by
Budiansky and O'Connell (1976) and it was further explored by many researchers (Hoenig, 1979; Horii

and Nemat-Nasser, 1983; Horii and Nemat-Nasser, 1990; Gottesman et al., 1980; Laws et al., 1983;

Laws and Brockenbrough, 1987; Laws and Dvorak, 1987; Sumarac and Krajcinovic, 1987; Sumarac and

Krajcinovic, 1989; Krajcinovic and Sumarac, 1989; Ju, 1991; Ju and Lee, 1991; Lee and Ju, 1991).

Kachanov (1987) developed a numerical method to compute the e�ective moduli of cracked solids.
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Kachanov (1992, 1994) also evaluated various existing approximate models based on his numerical
results. Huang et al. (1996) presented the numerical solutions. The generalized self-consistent method for
composite materials (Christensen and Lo, 1979) was adopted for cracked solids by Aboudi and
Benveniste (1987) and Huang et al. (1994). Aboudi and Benveniste (1987) embedded a crack in a
circular matrix that, in turn, was put into an e�ective medium and Huang et al. (1994) explored an
elliptical (2-D) or an ellipsoidal (3-D) matrix. Hashin (1988) also evaluated the e�ective moduli of
microcracked solids using the di�erential method (Roscoe, 1952, 1973; McLaughlin, 1977; Norris, 1985;
Laws and Dvorak, 1987). The Mori±Tanaka method (Mori and Tanaka, 1973) was utilized for
microcracked solids by Zhao et al. (1989) and Benveniste (1986).

In this study, a new energy balance equation is proposed. In addition, new non-interacting and self-
consistent solutions for the e�ective elastic moduli of solids with randomly oriented microcracks are
presented.

2. A new energy balance equation for microcracked solids

As shown in Fig. 1(a,b), the circular (2-D) or spherical (3-D) RVE with microcracks in the in®nite matrix
and its e�ective medium in the in®nite matrix are considered. In the present study, it is assumed that the
potential energy released by embedding the circular or spherical RVE with microcracks into the in®nite
matrix is equal to that induced by introducing its e�ective medium into the identical in®nite matrix:

Dfeffective � Dfmicro, �1�
where Dfe�ective and Dfmicro are the potential energies released by the e�ective medium and the
microcracks embedded in the in®nite matrix, respectively. Dfe�ective can be obtained by Eshelby's method
as (Eshelby, 1957)

Dfeffective � 1

2
Asss0:

�
C0:�Cÿ C0�ÿ1:C0 � C0:S0

�ÿ1
:sss0, �2�

where ss0 are the far-®eld stresses, C and C0 are the e�ective elastic sti�ness tensor of the microcracked
solid and the elastic sti�ness tensor of the matrix, respectively; A denotes the area of the circular RVE
for 2-D problems, which also denotes the corresponding sub-region in terms of the context; S0 is
Eshelby's tensor associated with the Poisson's ratios of the matrix and the circular cylinder region.

Fig. 1. A new energy balance for the analysis of e�ective moduli of microcracked solids.
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Subsequently, Eqs. (2) and (1) yield a new energy balance equation:

1

2
Asss0:

�
C0:�Cÿ C0�ÿ1:C0 � C0:S0

�ÿ1
:sss0 � Dfmicro: �3�

The solutions for e�ective shear and bulk moduli of elastic isotropic solids with randomly oriented
cracks can be evaluated using Eq. (3).

Consider the microcracked solid under two remote loading conditions such as plane hydrostatic stress
sss0

K with s0Kab � s0Kdab (a=1, 2; b=1, 2) and in-plane pure shear sss0
G with s0G11 � ÿs0G22 � s0G and other

s0Gab � 0: The e�ective medium is taken as isotropic. Then two independent equations for the e�ective
plane bulk modulus K and the e�ective shear modulus G of the microcracked solid can be obtained
from Eq. (3) as

1

2K0

Kÿ K0

K0 � x�Kÿ K0� �
1ÿ

s0K
�2 1ADfmicro �4�

and

1

2G0

Gÿ G0

G0 � Z�Gÿ G0� �
1ÿ

s0G
�2 1ADfmicro, �5�

where K0=E0/[2(1+n0)(1ÿ2n0)] and G0=E0/[2(1+n0)] denote the plane strain bulk and shear moduli of
the matrix, respectively; E0 and n0 are the Young's modulus and Poisson's ratio of the matrix; x=1/
[2(1ÿn0)], Z=(3ÿ4n0)/[4(1ÿn0)] for 2-D plane strain problems. Similarly, the solutions for 3-D problems
can be evaluated by replacing the circular RVE with the spherical RVE. Eshelby's tensor S0 will then be
associated with Poisson's ratios of the matrix and the spherical region, and x=(1+n0)/[3(1ÿn0)],
Z=(8ÿ10n0)/[15(1ÿn0)].

Note that Dfmicro in the present energy balance equation (Eqs. (3)±(5)) is the potential energy release
by embedding the circular or spherical RVE containing microcracks into the in®nite matrix.

3. Non-interacting approximation

It is di�cult to solve microcrack-interaction problems exactly. However, Dfmicro can be easily
evaluated based on the approximation of non-interacting cracks. The potential energy release Dfmicro

induced by embedding cracks into the circular sub-region of the in®nite matrix is approximated as the
sum of the potential energy releases induced by each single crack. Consequently, Dfmicro for 2-D and 3-
D isotropic problems can be written as (Kachanov, 1992, 1994)

Dfmicro � ÿA
� p
2E

0
0

�
rs0ijs

0
ij �6�

and

Dfmicro � ÿV 8
ÿ
1ÿ n20

�
9�1ÿ n0=2�E0

r
��

1ÿ n0
5

�
s0ijs

0
ij ÿ

n0
10

ÿ
s0kk

�2�
, �7�

where V is the volume of the spherical RVE and E 00 � E0=�1ÿ n20�:
The conventional non-interacting solution for e�ective moduli of microcracked solids is (Bristow,

1960)
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K

K0
� 1

��
1� 1ÿ n0

1ÿ 2n0
pr
�
, �8�

G

G0
� 1=�1� �1ÿ n0�pr� �9�

and

K

K0
� 1

��
1� 16

9

1ÿ n20
1ÿ 2n0

r

�
, �10�

G

G0
� 1

��
1� 16

9

1ÿ n0
1ÿ n0=2

�
1ÿ n0

5

�
r
�
: �11�

Note that the approximation of small crack density is not equivalent to the approximation of the
non-interacting cracks (Kachanov, 1992, 1993).

Substituting Eqs. (6) and (7) into the present energy balance equations (Eqs. (4) and (5)) yields a new
non-interacting solution for 2-D and 3-D problems

K

K0
� 1

��
1� 1ÿ n0

1ÿ 2n0
pr
��

1ÿ p
2
r
��

, �12�

G

G0
� 1

��
1� �1ÿ n0�pr

��
1ÿ p

4
r
��

�13�

and

K

K0
� 1

1� 16

9

1ÿ n20
1ÿ 2n0

r

��
1ÿ 32

27
�1� n0�r

� , �14�

G

G0
� 1

1� 16

9

1ÿ n0
1ÿ n0=2

�
1ÿ n0

5

�
r
��

1ÿ 16

135

7ÿ 5n0
1ÿ n0=2

�1ÿ n0=5�r
� : �15�

Note that the linearization of the present non-interacting solutions of Eqs. (12)±(15) leads to the
dilute solution.

4. Self-consistent approximation

The non-interacting approximation completely neglects the interactions among cracks while the self-
consistent method (SCM) takes account for the interactions. The conventional self-consistent solution
for 2-D and 3-D problems are (Budiansky and O'Connel, 1976; Huang et al., 1996)

K

K0
� �1ÿ 2n0��1ÿ pr�=�1ÿ 2n0 � n0pr�, �16�
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G

G0
� �1ÿ pr�=�1� n0pr� �17�

and

K

K0
� 1ÿ 16

9

1ÿ n2

1ÿ 2n
r, �18�

G

G0
� 1ÿ 16

9

1ÿ n
1ÿ n=2

�
1ÿ n

5

�
r, �19�

with

r � 45

16

�n0 ÿ n��2ÿ n�
�1ÿ n2��10n0 ÿ n�1� 3n0�� : �20�

The basic idea of the self-consistent method (Budiansky and O'Connel, 1976) is utilized to calculate
the Dfmicro in the right-hand-side of the present energy balance equations (Eqs. (4) and (5)). Budiansky
and O'Connel (1976) assumed that each crack was embedded into the in®nite e�ective medium to
consider the interactions among cracks. However, as shown in Fig. 2(b), the present self-consistent
method takes the circular or spherical RVE as the unknown e�ective media, where each crack is
embedded into it. Since the cracks are very small compared with the size of the RVE, it is assumed that
they are surrounded by the in®nite e�ective media as shown in Fig. 2(c,d). Consequently, sss0

RVE on the

Fig. 2. The present self-consistent method for e�ective moduli of microcracked solids
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interface between the RVE and the in®nite matrix become the boundary stresses in Fig. 2(c,d), and can
be calculated by Eshelby's method (Eshelby, 1957; Mura, 1982)

sss0
RVE � C:

�
I� S0:C

ÿ1
0 :�Cÿ C0�

�ÿ1
:Cÿ10 :sss0: �21�

When the plane hydrostatic (2-D) or hydrostatic (3-D) stresses s0ij � s0dij or in-plane pure shear
stresses s011 � ÿs022 � t0 and other s0ij � 0 are applied, the boundary stresses become s0RVEij

� s0RVEdij or
s0RVE11

�ÿs0RVE22
� t0RVE and other s0RVEij

� 0, respectively. In this case, s0RVE and t0RVE can be explicitly
obtained from Eq. (21) as

s0RVE �
K

K0 � x�Kÿ K0�s
0 �22�

and

t0RVE �
G

G0 � Z�Gÿ G0�t
0: �23�

By replacing E0 and n0 with those of the e�ective medium and ss0 with sss0
RVE in the right-hand-sides of

Eqs. (6) and (7), Dfmicro, given by the present self-consistent method, can be obtained for 2-D as

Dfmicro � ÿA�p=2E 0 �rs0RVEij
s0RVEij

�24�

and for 3-D as

Dfmicro � ÿV 8�1ÿ n2�
9�1ÿ n=2�Er

��
1ÿ n

5

�
s0RVEij

s0RVEij
ÿ n0

10

�
s0RVEkk

�2�
: �25�

Then by substituting Eqs. (24) and (25) with Eqs. (22) and (23) into Eqs. (4) and (5), the bulk and
shear moduli of 2-D and 3-D microcracked solids can be written as

�K � 1ÿ pr
2

"
1� 1

1ÿ 2n0

�K

�G

#
�K

1� 1=�2�1ÿ n0��� �Kÿ 1� , �26�

�G � 1ÿ pr
2

�
1� �1ÿ 2n0�

�G

�K

�
�G

1� �3ÿ 4n0�=�4�1ÿ n0��� �Gÿ 1� , �27�

and

�K � 1ÿ 16

9
r
1ÿ n2

1ÿ 2n
�K

1� �1� n0�=�3�1ÿ n0��� �Kÿ 1� , �28�

�G � 1ÿ 16

9
r

1ÿ n
1ÿ n=2

�1ÿ n=5�
�G

1� �8ÿ 10n0�=�15�1ÿ n0��� �Gÿ 1� , �29�

n �
�

�Kÿ 1ÿ 2n0
1� n0

�G

�
=�2 �K� 1ÿ 2n0

1� n0
�G�, �30�

where �K � K
K0

and �G � G
G0

are the normalized e�ective plane strain bulk and shear moduli for 2-D
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problems or the normalized e�ective bulk and shear moduli for 3-D problems; and n0 and n are the
Poisson's ratios of the matrix and the e�ective medium. The equations can be solved numerically and
the present self-consistent solutions are reduced to the dilute solution after the linearization in the limit
of small crack density.

5. Results and discussion

The new non-interacting and self-consistent solutions for e�ective moduli of 2-D and 3-D
microcracked solids are evaluated and plotted in Figs. 3±6. The present solutions are also compared
with various existing results.

The present non-interacting solutions are quite di�erent from the conventional non-interacting
solutions. However, as shown in Figs. 3 and 4, the present non-interacting solutions for the bulk and

Fig. 3. E�ective plane strain bulk moduli for the 2-D case

Fig. 4. E�ective shear moduli for the 2-D case
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shear moduli agree well with the numerical results by Huang et al. (1996) up to the crack density r=0.2
and 0.6, respectively. Physically, if r 41, the e�ective moduli of the RVE should be zero. For high
crack density, it can be seen that the bulk and shear moduli become zero at the cut-o� points r=2/p
and r=4/p for 2-D case and at r1 0.65 and r1 1.39 with n0=0.3 for the 3-D case, respectively. In the
present non-interacting solution, the neglected inter-crack interactions yield the cut-o� points.

The drawback of the present non-interacting solution can be overcome by considering the inter-crack
interactions. The present self-consistent solution accounts for the inter-crack interactions by considering
the RVE with each crack as the unknown e�ective medium. As depicted in Figs. 5 and 6, the present
self-consistent solution for plane strain bulk moduli shows an excellent agreement with the numerical
results by Huang et al. (1996). However, the discrepancy is observed between the present self-consistent
solution and their numerical results for shear moduli. The results show that the present non-interacting
solution is generally lower than the present self-consistent solution. However, for shear moduli, both
solutions cross each other.

Fig. 5. E�ective bulk moduli for the 3-D case

Fig. 6. E�ective shear moduli for the 3-D case
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6. Conclusions

Based on the present energy balance equation proposed in the present study, two new approximate
models such as non-interacting and self-consistent solutions are presented. The present self-consistent
solution accounts for the inter-crack interactions by considering the RVE around each crack as the
unknown e�ective medium. The present non-interacting solution shows the cut-o� points for very high
crack densities.
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